Những câu hỏi liên quan
Nguyễn Thị Hải Yến
Xem chi tiết
Ruby
Xem chi tiết
cao minh thành
Xem chi tiết
Hoàng Tuấn Hùng
Xem chi tiết
Akai Haruma
12 tháng 1 2019 lúc 22:02

Lời giải:

Thay $1=a+b+c$ ta có:

\(ab+c=ab+c.1=ab+c(a+b+c)=(ab+ca)+c(b+c)=(c+a)(c+b)\)

\(bc+a=bc+a(a+b+c)=(bc+ab)+a(a+c)=b(a+c)+a(a+c)=(a+b)(a+c)\)

\(ca+b=ca+b(a+b+c)=(ca+ba)+b(b+c)=a(c+b)+b(b+c)=(b+a)(b+c)\)

Do đó:
\(P=\frac{ab+c}{(a+b)^2}.\frac{bc+a}{(b+c)^2}.\frac{ac+b}{(a+c)^2}=\frac{(ab+c)(bc+a)(ca+b)}{(a+b)^2(b+c)^2(c+a)^2}\)

\(=\frac{(c+a)(c+b)(a+b)(a+c)(b+c)(b+a)}{(a+b)^2(b+c)^2(c+a)^2}=\frac{(a+b)^2(b+c)^2(c+a)^2}{(a+b)^2(b+c)^2(c+a)^2}=1\)

Bình luận (2)
SHIZUKA
Xem chi tiết
Nguyễn Hải Dương
15 tháng 11 2017 lúc 20:27

\(\dfrac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}\)

\(=\dfrac{a^2+\left(a-c\right)^2+c^2+2\left(ab-ac-bc\right)}{b^2+\left(b-c\right)^2+c^2+2\left(ab-ac-bc\right)}\)

\(=\dfrac{a^2+a^2-2ac+c^2+c^2+2ab-2ac-2bc}{b^2+b^2-2bc+c^2+c^2+2ab-2ac-2bc}\)

\(=\dfrac{2a^2+2c^2-4ac+2ab-2bc}{2b^2+2c^2-4bc+2ab-2ac}\)

\(=\dfrac{\left(a-c\right)^2+b\left(a-c\right)}{\left(b-c\right)^2+a\left(b-c\right)}\)

\(=\dfrac{\left(a-c\right)\left(a-c+b\right)}{\left(b-c\right)\left(a-c+b\right)}=\dfrac{a-c}{b-c}\left(đpcm\right)\)

Bình luận (0)
Khanh7c5 Hung
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 1 2021 lúc 15:36

Đặt \(\left(a;b;c\right)=\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)\Rightarrow x+y+z=3\)

\(K=\dfrac{z^3}{x^2+z^2}+\dfrac{x^3}{x^2+y^2}+\dfrac{y^3}{y^2+z^2}\)

Ta chứng minh BĐT phụ sau: \(\dfrac{x^3}{x^2+y^2}\ge\dfrac{2x-y}{2}\)

Thật vậy, BĐT tương đương:

\(2x^3\ge2x^3-x^2y+2xy^2-y^3\)

\(\Leftrightarrow y\left(x-y\right)^2\ge0\) (đúng)

Tương tự: \(\dfrac{y^3}{y^2+z^2}\ge\dfrac{2y-z}{2}\) ; \(\dfrac{z^3}{z^2+x^2}\ge\dfrac{2z-x}{2}\)

Cộng vế với vế:

\(K\ge\dfrac{x+y+z}{2}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=\dfrac{1}{3}\)

Bình luận (0)
Lizy
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 1 lúc 22:38

Trước hết theo BĐT Schur bậc 3 ta có:

\(\left(a+b+c\right)\left(a^2+b^2+c^2\right)+9abc\ge2\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+3abc\ge2\left(ab+bc+ca\right)\) (do \(a+b+c=3\)) (1)

Đặt vế trái BĐT cần chứng minh là P, ta có:

\(P=\dfrac{\left(a^2+abc\right)^2}{a^2b^2+2abc^2}+\dfrac{\left(b^2+abc\right)^2}{b^2c^2+2a^2bc}+\dfrac{\left(c^2+abc\right)^2}{a^2c^2+2ab^2c}\)

\(\Rightarrow P\ge\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)}=\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{\left(ab+bc+ca\right)^2}\)

Áp dụng (1):

\(\Rightarrow P\ge\dfrac{\left[2\left(ab+bc+ca\right)\right]^2}{\left(ab+bc+ca\right)^2}=4\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (1)
cao minh thành
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
23 tháng 8 2018 lúc 16:21
Bình luận (0)
My Phạm
Xem chi tiết
Ma Sói
9 tháng 1 2018 lúc 18:40

Bạn quy đồng làm từ từ là đc

Bình luận (0)